89 research outputs found

    Janus-graphene: a two-dimensional half-auxetic carbon allotropes with non-chemical Janus configuration

    Full text link
    The asymmetric properties of Janus two-dimensional materials commonly depend on chemical effects, such as different atoms, elements, material types, etc. Herein, based on carbon gene recombination strategy, we identify an intrinsic non-chemical Janus configuration in a novel purely sp2^2 hybridized carbon monolayer, named as Janus-graphene. With the carbon gene of tetragonal, hexagonal, and octagonal rings, the spontaneous unilateral growth of carbon atoms drives the non-chemical Janus configuration in Janus-graphene, which is totally different from the chemical effect in common Janus materials such as MoSSe. A structure-independent half-auxetic behavior is mapped in Janus-graphene that the structure maintains expansion whether stretched or compressed, which lies in the key role of pzp_z orbital. The unprecedented half-auxeticity in Janus-graphene extends intrinsic auxeticity into pure sp2^2 hybrid carbon configurations. With the unique half-auxeticity emerged in the non-chemical Janus configuration, Janus-graphene enriches the functional carbon family as a promising candidate for micro/nanoelectronic device applications

    Superfolded configuration induced low thermal conductivity in two-dimensional carbon allotropes revealed via machine learning force constant potential

    Full text link
    Understanding the fundamental link between structure and functionalization is crucial for the design and optimization of functional materials, since different structural configurations could trigger materials to demonstrate diverse physical, chemical, and electronic properties. However, the correlation between crystal structure and thermal conductivity (\k{appa}) remains enigmatic. In this study, taking two-dimensional (2D) carbon allotropes as study cases, we utilize phonon Boltzmann transport equation (BTE) along with machine learning force constant potential to thoroughly explore the complex folding structure of pure sp2 hybridized carbon materials from the perspective of crystal structure, mode-level phonon resolved thermal transport, and atomic interactions, with the goal of identifying the underlying relationship between 2D geometry and \k{appa}. We propose two potential structure evolution mechanisms for targeted thermal transport properties: in-plane and out-of-plane folding evolutions, which are generally applicable to 2D carbon allotropes. It is revealed that the folded structure produces strong symmetry breaking, and simultaneously produces exceptionally strongly suppressed phonon group velocities, strong phonon-phonon scattering, and weak phonon hydrodynamics, which ultimately lead to low \k{appa}. The insight into the folded effect of atomic structures on thermal transport deepens our understanding of the relationship between structure and functionalization, which offers straightforward guidance for designing novel nanomaterials with targeted \k{appa}, as well as propel developments in materials science and engineering

    A systematic bibliometric analysis on the clinical practice of CGM in diabetes mellitus from 2012 to 2022

    Get PDF
    BackgroundContinuous glucose monitoring (CGM) has revolutionized diabetes management, but a comprehensive analysis of its clinical implementation is lacking. This study aims to explore CGM in diabetes practice over the past decade using bibliometric analysis. It will identify trends, research focal points, and provide a framework for future investigations.Materials and methodsThe Web of Science Core Collection (WOSCC) was utilized to acquire literature pertaining to the employment of continuous glucose monitoring (CGM) in diabetes that was published between the years 2012 and 2022, and to conduct a comprehensive analysis of the associated citation data. To achieve bibliometric visualization and analysis of the collated data, the bibliography package in the Rstudio(v.4.2.2), Citespace 6.2.R4, and VOS viewer were employed.ResultsA total of 3024 eligible publications were extracted from 91 countries, with the United States being the leading country in terms of the number of issued articles. Furthermore, the annual publication rate has shown a gradual increase during the past decade. Among the various journals in this field, DIABETES TECHNOLOGY & THERAPEUTICS was identified as the most highly cited one. Keyword clustering analysis of the extracted publications indicates that the research hotspots in the past decade have primarily focused on “continuous glucose monitoring”, “glycemic variability”, “type 1 diabetes”, “hypoglycemia”, and “glycemic control”. Moreover, the analysis of keyword emergence reveals that “Time In Range” and “Young Adult” represent the current research frontiers for the years 2012-2022.ConclusionThe concept of Time in Range (TIR) has garnered considerable attention as a significant area of inquiry and an emerging research trend in the clinical practice of Continuous Glucose Monitoring (CGM) for Diabetes Mellitus. Moreover, recent investigations have demonstrated a growing focus on young adults with type 1 diabetes as the research population of interest. In the foreseeable future, research endeavors will persist in the pursuit of improving glycemic management among young adults through the utilization of continuous glucose monitoring (CGM) technology, while also delving into the examination of the Time in Range metric via supplementary clinical investigations

    A study of factors influencing long-term glycemic variability in patients with type 2 diabetes: a structural equation modeling approach

    Get PDF
    AimThe present study aims to utilize structural equation modeling (SEM) to investigate the factors impacting long-term glycemic variability among patients afflicted with type 2 diabetes.MethodThe present investigation is a retrospective cohort study that involved the collection of data on patients with type 2 diabetes mellitus who received care at a hospital located in Chengdu, Sichuan Province, over a period spanning from January 1, 2013, to October 30, 2022. Inclusion criteria required patients to have had at least three laboratory test results available. Pertinent patient-related information encompassing general demographic characteristics and biochemical indicators was gathered. Variability in the dataset was defined by standard deviation (SD) and coefficient of variation (CV), with glycosylated hemoglobin variation also considering variability score (HVS). Linear regression analysis was employed to establish the structural equation models for statistically significant influences on long-term glycemic variability. Structural equation modeling was employed to analyze effects and pathways.ResultsDiabetes outpatient special disease management, uric acid variability, mean triglyceride levels, mean total cholesterol levels, total cholesterol variability, LDL variability, baseline glycated hemoglobin, and recent glycated hemoglobin were identified as significant factors influencing long-term glycemic variability. The overall fit of the structural equation model was found to be satisfactory and it was able to capture the relationship between outpatient special disease management, biochemical indicators, and glycated hemoglobin variability. According to the total effect statistics, baseline glycated hemoglobin and total cholesterol levels exhibited the strongest impact on glycated hemoglobin variability.ConclusionThe factors that have a significant impact on the variation of glycosylated hemoglobin include glycosylated hemoglobin itself, lipids, uric acid, and outpatient special disease management for diabetes. The identification and management of these associated factors can potentially mitigate long-term glycemic variability, thereby delaying the onset of complications and enhancing patients’ quality of life

    Tceal7 Regulates Skeletal Muscle Development through Its Interaction with Cdk1

    No full text
    We have previously reported Tceal7 as a muscle-specific gene that represses myoblast proliferation and promotes myogenic differentiation. The regulatory mechanism of Tceal7 gene expression has been well clarified recently. However, the underlying mechanism of Tceal7 function in skeletal muscle development remains to be elucidated. In the present study, we have generated an MCK 6.5 kb-HA-Tceal7 transgenic model. The transgenic mice are born normally, while they have displayed defects in the growth of body weight and skeletal muscle myofiber during postnatal development. Although four RxL motifs have been identified in the Tceal7 protein sequence, we have not detected any direct protein-protein interaction between Tceal7 and Cyclin A2, Cyclin B1, Cylin D1, or Cyclin E1. Further analysis has revealed the interaction between Tceal7 and Cdk1 instead of Cdk2, Cdk4, or Cdk6. Transgenic overexpression of Tceal7 reduces phosphorylation of 4E-BP1 Ser65, p70S6K1 Thr389, and Cdk substrates in skeletal muscle. In summary, these studies have revealed a novel mechanism of Tceal7 in skeletal muscle development
    • …
    corecore